Exercice non spécialité : cinétique chimique

On étudie la réaction d'oxydation de l'acide oxalique HOOC–COOH (solution incolore) par l'ion permanganate $MnO_{4~(aq)}^{-}$ en milieu acide (solution de couleur violette).

Le suivi de la réaction est réalisé par un enregistrement spectrophotométrique.

- bechers de 75 mL, 150 mL

- pipettes jaugées de 5 mL, 10 mL, 20 mL
- éprouvette graduée de 50 mL, 125 mL
- fiole jaugée de 50 mL, 100 mL, 250 mL
- erlenmeyer de 250 mL

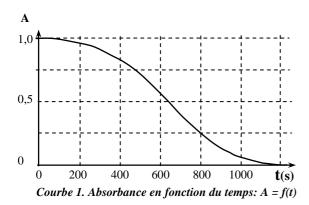
1. Préparation de la solution de permanganate de potassium :

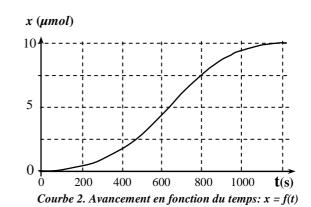
On dispose d'une solution mère de concentration : $c_0 = 1,00 \times 10^{-2} \text{ mol.L}^{-1}$ et du matériel encadré ci-contre :

Décrire, en précisant le matériel utilisé, le protocole à suivre pour préparer

50,0 mL de solution aqueuse de permanganate de potassium de concentration $c_1 = 1,00 \times 10^{-3}$ mol.L⁻¹.

2. Réaction d'oxydoreduction :


 $La\ r\'{e}action\ met\ en\ jeu\ les\ deux\ couples\ suivants:\ CO_{2\ (aq)}\ /H_2C_2O_{4\ (aq)}\quad et\quad MnO_4^{-}{}_{(aq)}\ /\ Mn^{2+}{}_{(aq)}$


- 2.1. Définir : un oxydant, une oxydation. Placer ces couples l'un par rapport à l'autre en justifiant
- **2.2.** Écrire les demi-équations chimiques pour chaque couple dans le sens où elles se font effectivement, puis l'équation de la réaction d'oxydoréduction entre les ions permanganate et l'acide oxalique en milieu acide.
- **2.3.** A l'instant t=0, on mélange $V_1 = 20,0$ mL de la solution aqueuse de permanganate de potassium de concentration molaire apportée c_1 , acidifiée par de l'acide sulfurique, à $V_2 = 20,0$ mL d'une solution aqueuse d'acide oxalique de concentration molaire apportée $c_2 = 5,00 \times 10^{-3}$ mol.L⁻¹.
 - **2.3.a.** Quelle est, à l'instant t = 0, la quantité de matière n_{01} d'ions permanganate ?
 - **2.3.b.** Quelle est, à l'instant t = 0, la quantité de matière n_{02} d'acide oxalique ?
 - **2.3.c.** Réécrire l'équation de la réaction entre les ions permanganate et l'acide oxalique, puis dresser un tableau d'avancement. Calculer l'avancement maximal x_{max} . En déduire le réactif limitant.
- **2.4.** Les ions $Mn^{2+}_{(aq)}$ sont incolores en solution aqueuse. Comment évolue l'aspect du milieu réactionnel au cours du temps ?

3. Suivi spectrophotométrique :

La transformation chimique supposée totale étant lente, on peut suivre son évolution par spectrophotométrie. On mesure l'absorbance A du mélange réactionnel placé dans la cuve du spectrophotomètre.

- **3.1.** Quelle est l'espèce chimique principalement responsable de l'absorbance A de la solution ?
- **3.2.** Rappeler brièvement le protocole d'utilisation d'un spectrophotomètre.
- **3.3.** Enoncer la loi de Beer-Lambert en précisant à quoi correspondent les symboles utilisés, ainsi que les unités correspondantes.
- **3.4.** Après étalonnage du spectrophotomètre, on arrive à la relation : $A = 2,0.10^3$. [MnO_{4 (aq)}] avec [MnO_{4 (aq)}] en mol.L⁻¹ Montrer que l'absorbance A et l'avancement de la réaction x sont reliés par la relation: $\mathbf{x} = (\mathbf{1},\mathbf{0} \times \mathbf{10}^{-5} \mathbf{A} \times \mathbf{10}^{-5})$ mol.
- **3.5.** Comment peut-on tracer la courbe 2 ci-dessous à partir de la courbe 1 obtenue expérimentalement ?
- **3.6.** Comment la courbe 1 donnée en annexe A = f(t) permet-elle de retrouver le réactif limitant ?
- **3.7.** Définir puis déterminer, en justifiant, le temps de demi-réaction.
- **3.8.** Définir la vitesse volumique de réaction en fonction de l'avancement x(t). Calculer sa valeur pour t = 600s.
- **3.9.** Le volume du milieu réactionnel reste constant : en comparant **qualitativement** les vitesses de réaction aux dates $t_1 = 200 \text{ s}$, $t_2 = 600 \text{ s}$ et $t_3 = 1000 \text{ s}$, dire comment évolue la vitesse \mathbf{v} au cours du temps. Quels sont les facteurs cinétiques permettant d'expliquer ces variations de vitesses ? Tracer l'allure de la courbe vitesse $\mathbf{v} = \mathbf{f}(t)$.
- **3.10.** Comment pourrait-on atteindre plus rapidement l'état final de cette transformation chimique ?

Corrigé Exercice type : cinétique chimique

1. Préparation de la solution de permanganate de potassium :

Rapport de dilution: $V_1/V_0 = c_0/c_1 = 1,00.10^{-2}/1,00.10^{-3} = 10,0$ donc $V_0 = 5,0$ mL si $V_1 = 50,0$ mL.

Protocole : On prélève V₀=5,0mL de solution mère à l'aide d'une pipette jaugée de 5,0mL (rincée avec cette solution) munie d'une propipette. On les verse dans une fiole jaugée de 50,0mL (rincée à l'eau distillée) remplie aux 2/3 d'eau distillée. On homogénéise la solution obtenue par agitation.

On complète d'eau jusqu'au trait de jauge puis on homogénéise la solution obtenue par agitation.

2. Réaction d'oxydoreduction :

- **2.1.** Un oxydant est une espèce chimique susceptible de gagner un ou plusieurs électrons. Une oxydation est une demi-réaction au cours de laquelle un réducteur perd un ou plusieurs électrons
- **2.2.** Le meilleur oxydant MnO₄⁻ placé en haut à gauche réagit avec le meilleur réducteur H₂C₂O₄ placé en bas à droite.

 $MnO_{4 (aq)}^{-} + 8H_{(aq)}^{+} + 5e^{-} = Mn^{2+}_{(aq)} + 4H_{2}O_{(l)}$ **x2** $H_{2}C_{2}O_{4 (aq)} = 2CO_{2(aq)} + 2H_{(aq)}^{+} + 2e^{-}$ **x5**

2.3. a. $\mathbf{n}(\text{solut\'e apport\'e KMnO}_{4(s)}) = V_1.C_1 = 20,0.10^{-3} \times 1,00.10^{-3} = 2,00.10^{-5} \text{mol}.$ Réaction de dissolution du soluté dans l'eau : $KMnO_{4(s)} = MnO_{4^-(aq)}^- + K^+_{(aq)}$ donc $\mathbf{n_{01}}(MnO_{4^-(aq)}^-) = 2,00.10^{-5} mol$.

2.3.b. $\mathbf{n}_{02}(H_2C_2O_4) = V_2.C_2 = 20,0.10^{-3} \times 5,00.10^{-3} = 1,00.10^{-4} \text{mol}.$

2.3.c.

$2MnO_{4 (aq)}^{-} + 5H_2C_2O_{4 (aq)} + 6H_{(aq)}^{+} = 2Mn^{2+}_{(aq)} + 10CO_{2(aq)} + 8H_2O_{(l)}$							
$x_0 = 0$	$2,00.10^{-5}$	$1,00.10^{-4}$	Excès		0	0	solvant
X	$2,00.10^{-5}$ – $2x$	$1,00.10^{-4}$ – $5x$	/		2x	10x	/
$x_{\text{max}} = 1,00.10^{-5}$	0	$5,0.10^{-5}$	/		$2,00.10^{-5}$	$1,00.10^{-4}$	/

Si MnO₄ est le réactif limitant, x_{max}=1,00.10⁻⁵mol

Si $H_2C_2O_4$ est le réactif limitant, $x_{max}=2,00.10^{-5}$ mol donc $x_{max}=1,00.10^{-5}$ mol et MnO_4 est le réactif limitant

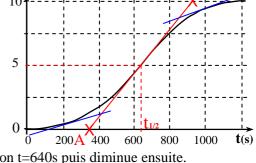
 $\textbf{2.4.} \ La \ seule \ espèce \ chimique \ présente \ qui \ ne \ soit \ pas \ incolore \ est \ MnO_4^-_{(aq)} \ (couleur \ violette) \ .$ Or cet ion disparaît totalement en fin de réaction : le milieu réactionnel passe de violet à incolore.

3. Suivi spectrophotométrique :

- 3.1. L'espèce chimique principalement responsable de l'absorbance A de la solution est donc l'ion permanganate MnO_{4 (aq)}
- 3.2. Protocole d'utilisation du spectrophotomètre :
 - * sélectionner une longueur d'onde correspondant à une couleur absorbée par l'ion MnO_{4 (aq)}.
 - * placer dans l'appareil une cuve remplie d'eau distillée puis tarer : il affiche A=0.
 - * mettre dans la cuve la solution à tester, puis placer la cuve dans le spectrophotomètre et lire A.
- 3.3. loi de Beer-Lambert : Pour des solutions contenant une espèce colorée X pas trop concentrée, l'absorbance A est proportionnelle à la concentration [X] en espèce absorbante et, bien sur, à l'épaisseur ℓ de solution traversée.

 $A = \mathcal{E}_{\lambda} \cdot [X] \cdot \ell$ avec ℓ en m donc [X] en mol.m⁻³. ϵ_{λ} est le coefficient d'extinction molaire de X. Son unité est m².mol⁻¹

- **3.4.** $A = 2.0.10^3$. $[MnO_4^-]_{(aq)} = 2.0.10^3 (2.00.10^{-5} 2x)/40.0.10^{-3} = 1.0 1.0.10^5$. x donc $\mathbf{x} = (1.0 \times 10^{-5} \mathbf{A} \times 10^{-5})$ en mol
- **3.5.** Pour différentes valeurs de t on lit A sur la courbe 1 puis on calcule x à partir de A grâce à la relation précédente.
- **3.6.** La courbe A=f(t) montre que en fin de réaction A=0 donc l'espèce colorée MnO_{4 (aq)} a totalement disparu.
- 3.7. Le temps de demi-réaction est le temps nécessaire pour que l'avancement de réaction x atteigne la moitié de sa valeur maximale. Soit ici $x = x_{max}/2 = 5,00.10^{-6}$ mol qui correspond à t_{1/2}=640s x (µmol)
- **3.8.** $v = \frac{1}{V} \frac{dx}{dt}$ où V est le volume du milieu réactionnel soit ici 40,0.10⁻³L.


On trace la tangente à la courbe pour t = 600s. On prend deux points A et B sur cette tangente, assez éloignés l'un de l'autre pour limiter les erreurs de mesure, et on calcule sa pente qui correspond à dx/dt. $v = \frac{1}{40.10^{-3}} \frac{10.10^{-6} - 0}{940 - 340} = 4,2.10^{-7} \text{mol.L}^{-1}.\text{s}^{-1}.$

$$v = \frac{1}{40.10^{-3}} \frac{10.10^{-6} - 0}{940 - 340} = 4,2.10^{-7} \text{mol.L}^{-1}.\text{s}^{-1}.$$

3.9. La vitesse de réaction est à chaque instant proportionnelle à la pente de la tangente à la courbe x=f(t) : on constate qu'elle augmente jusqu'à environ t=640s puis diminue ensuite.

Explication : cette réaction génère son propre catalyseur qui est l'ion manganèse Mn²⁺. En début de réaction, la formation de ce catalyseur augmente la vitesse de réaction. Mais un autre facteur

cinétique s'oppose à cette augmentation de vitesse : la diminution de concentration des réactifs qui finit par prendre le dessus lorsque le réactif limitant s'épuise.

